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By applying the von Neumann stability analysis it is seen that the stability
conditions of (6.72) with constant coefficients are given by

(i) o< -}1-,1'2%‘,p>0

) o< 4. 7<40<Vap< Ji:j‘: 6.73)

For ¢ = 0, and 7 = 1/4 Equation (6.72) becomes

(1—rp2ant" 83up"

-2{:1— (r- %) pza:.s;] i [1=7p2 " g2t (6.74)
which only requires the solution of a tridiagonal system for each n.
Equation (6.72) correct to 0(k2-+h2) for arbitrary o and 7 may be written as
1 —7p%am Q%' 83(umt ' = 2um+1im ") = pam 05" 831
which can be simplified to
[1 +oal 82(al) ! — mpiam 82 (umt' — 2um +um ') = plam 8% um 6.75)
For o =7=1/12, the difference scheme (6.75) has ordér of accuracy (A*+k*).

6.5.2 Two space dimensions
Here the linear hyperbolic equation under consideration is
02u 02y o2
22 =96 3, 0) 5o H(x, 3, 1) —ay—l; (6.76)

where a(x, y, t) > 0, b(x, y, 1) > 0. The initial and boundary conditions
are given by (6.32). The explicit difference replacement to (6.76) can be
written as

8% ' = pX(alim 8%+ bl 83) ] m (6.77)

where u/m is the approximate value of w(xi, ym, t). The implicit difference
formulas for (6.76) can be obtained from the equation
07" 82 ufm=palm Q%' S2ulm+bimQ5 " 8 tim] (6.78)
where
Qr=1+78,,0:=1+08}and Qy=1+08} (6.79)
The difference approximation represented by (6.78) has truncation error
of 0(k?+ h?) for arbitrary ¢ and 7. The values o =7=1/12 increase the order
of the truncation error to (k*-+ A*). Multiplying (6.78) by Qr and simplifying,
we obtain
81 11— 7palmQ% " 8311~ 7p%b7m Q5 ' 8] ulm
=pXal mQ% "' 82tlm+ blm Q5 Sl m) (6.80)
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together with the initial conditions
u(x,y,0)=0

________c"u(x: 20 sin? x sin y
ot ’ -

and the boundary conditions
u(}, y, 1)=sin2 () sin y sin ¢
1(1, y, t)=sin? (1) sin y sin ¢
u(x, 3, 1)=sin (})sin® x sins
u(x, 1, 1) =sin (1) sin? x sin ¢

has been solved numerically with the various methods. The theoretical solu-
tion is given by ’

u(x, v, t)=sin? x sin y sin ¢

The problem is solved first with k£ =/4/2=0.05 and then with k= 4/2=0.025.
The maximum absolute errors are given in Table 6.3. For small value of

- the time step Ciment-Leventhal scheme produces best results, even though
the difference scheme (6.86) with o =7=1/12 is of comparable accuracy. As
expected other values of (o, 7) give larger errors than these two schemes.
However, when p =1, the Mckee scheme and the Ciment-Leventhal scheme
fail as this value violates the stability condition. The unconditionally stable
formulas obtained from (6.86) give accurate and stable results.

TABLE 6.3 MAXIMuM ABSOLUTE ERROR VALUES IN THE SOLUTION OF
(6.76) SusIECT TO (6.90) FOR p=0.,5

(9 7) Time h Formula Ciment-Leventhal
steps (6.86) Sformula

11

(ﬁ .i7) 15 1 5.8087-08 1.2597-08
30 05 3.8407-09 6.7558-10
20 1 7.4659-08 1.9266-08
40 05 5.3062-09 - 8.7666-10

(‘.‘2_ , -;—) 15 1 8.3094-06
30 05 2.1234-06
20 R 7.6924-06
40 05 2.0135-06

(& +) 30 05 2.1277:07

40 05 2.0512-07
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6.6 LOCALLY ONE DIMENSIONAL (LOD) METHODS

The first step in LOD method is to replace the differential equation by a
system of differential equations in .one space variable and the second step
consists in forming a difference equation system with intermediate functions.
We shall examine the principle of the method by taking the wave equation
- in two and three space variables.

6.9.1 Two space dimensions
The wave equation in two space variables

a2t ey
can be replaced by two locally one-dimensional equations

1 6% u 1 % c*u

L - T (6.91)

Applying (6.91) consecutively at time steps k/2, we obtain the following
difference schemes ,
(1 + TF(E)) " F(EJu=12 = p2(1 +83)~ 18 um112
(L +7F(E)) F(Eur = 4p(1 -+ o82) 18"
(1 + TF(E)) " F(EuntV2 = §p¥(1 + 083)18um 112 (6.92)

where F(E)=Er 2_24 E:/z, E, is the shift operator, and 7, o are arbitrary
parameters. We denote the approximate value of u(lh mh, nk) by u*. Simp-
lifying (6.92), we get

(1 + a2t +um) =21 +(a+ Fp2)8Jun—12
(1 +ad3) (12 4 yr+112) = 2[1 +(a+ }p2)S3]u"
(1 +a8)(u + unt1) = 2[1 +(a + § p2)83Jun*12
where
a=o—4rp?

By successively eliminating 4"~1/2, 4"*12 from these equations we obtain the
equivalent difference scheme

(1 +a82)(1 + ad2) (=t = 2u" + um+t)
= p2[82 + 8% + 20828 + (3 — T)p828) un (6.93)
The difference scheme (6.93) differs from (6.40) by the ¢~rm

P} — )88
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In vector and matrix notations it can be written as

du cu _ .,
7 A 3x—0 (6.102)
1

0
where u=[1n w2]" and A = [ ]a constant 2 x 2 matrix. It is easily
1

0
verified that the eigenvalues of A are real and distinct and the corresponding
eigenvectors are linearly independent. In general, we take u=[u1 u2...un]" an
N-component vector and A a constant N x N matrix with real and distinct
cigenvalues and N linearly independent eigenvectors. Further, we may deter-
mine a non-singular matrix S such that A can be transformed to diagonal
form

S-1AS=D

where D is diagonal matrix with the diagonal elements A1, Az, -, Ay, the real
eigenvalues of A. Premultiplying (6.102) by S~ we obtain :

Q’l Q

-1 4)—§-1 ,é_ -1 )=
t_(S uw-S ASa.x(S uw=0

which can be written as
ov ¢y
W _DE)} =0 (6.103)
where v=S"'u.
The equation (6.103) component-wise becomes
%—A 3v,-

o iz =0, i=1,2, ., N (6.104)

Thus, we consider the difference schemes and related basic concepts with
reference to a simple first order partial differential equation,

6.7.1 First order hyperbolic scalar equation
Let us consider the scalar equation

g—tu +e g—?—c=0, ¢ real constant (6.105)
together with appropriate initial and boundary conditions. We cover the
specified domain by a rectangular network with spacing 4 and k in the x and
¢ directions respectively. We denote by (m, n) the nodal points and also as-
sumé that u, represents an approximation to the exact value u(Xu, tn). The
three different approximations for (6.105) in which the time derivatives is
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The exact solution of (6.105), satisfying (6.117) is given by
u(x, t)=exp (i2#w(x—ct)) (6.118)
where w and ¢ are the wave number and the phase speed respectively. The
equation (6.106ii) may be written as
nal

‘Um' =(1— cp)um+ cptim—1 (6.119)

Satisfying the initial condition (6.117), we seek -the solution of (6.119) of
the form

tm =& exp (i2nwmh) (6.120)
Substituting (6.120) in (6.119) and simplifying we obtain
é=1—cp(1—exp (—i2nwh))=| €| exp (—i2nwkc1) (6.121)

where
| €1=(1—4cp(l —cp) sin? mwh)!12 (6.122)
and
_ 1 _1__cp sin (2mwh)
= 5 -ctanl T—2¢p sin? (mwh) (6.123)

Further, when 4 is small and w is independent of 4, the relations (6.122) and
(6.123), respectively become

[§]=1-8Qmw)x,  s=1 (6.124)
c1= c(l - %(1 — ep)(1 = 2ep)2mwh)? + ) | (6.125)

where & is a some positive constant.
The solution (6.120) with (6.121), (6.122) and (6.123) may be written as

um = exp (— 2¢(1 — cp)mw2htn) exp (i2mW(Xm— Citn)) (6.126)

The exact solution (6.118) oscillates periodically in time without damping.
The numerical solution (6.126) displays damped oscillations, the amplitude
being damped out as exp (— 2¢(1 — cp)n?w?ht,) and tends to zero as n — .
Thus, the difference scheme (6.106ii)) may not be suitable for integrating
numerically (6.105) with ¢ > 0 over long time interval. In view of (6.124)
the difference scheme (6.106ii) is said to be dissipative of order 2s, s=1, i.e.,
two. We now define the relative phase error as

- P—Pg
Pg
where P is the phase of the numerical solution and Pr is the phase of the

exact solution to (6.105). The relative phase error of (6.106ii), using (6.125)
is written as

E,

(6.127)

Ep=— -é—(l —cp)(1 —2¢cp)2mwh)2 + ...
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which shows that the numerical solution lags behind the exact solution for
0 < cp < $. From (6.125) we find that the phase speed ¢1 depends on the
wave number w and the difference scheme (6.106ii) is said to be dispersive.
For ¢p=1 we obtain

E,=0and|£|=1
The solution of the differential equation (6.105) satisfies the difference equa-
tion (6.106ii).

Example 6.3 Solve the initial boundary Qalue, prObleni
ou  du : R
a " ox
u(0, )=u(1, 1)
u(x, 0)=g(x)

=0, 0<x<1

0 0 < x <025
x-0.25 0.25 < x < 0.5
o 0.25
0.75—-x
: <x<
035 0.5 < x<0.75
0 075 <x < 1

. 1 1
using the Lax-Wendroff method with A= T andp= 5

The nodal points are
Xm=mh, ta=nk 0 m<8n=01,2..

The Lax-Wendroff method for p= —;— becomes

l b
Y AL —%— (s 1—tm=1)+ 3 (et = 20 -t —1)

The initial and boundary conditions give

uo=0 u1=0 u3=0
ug=—%— ug=1 ug=-‘l,2—
ue=0 u1=0 ug=0
ue=u3 (periodic boundary conditions)
We have
n=0  Um= u?n_‘il‘ (ttmr 41— thm—1) +—1§- (%0 11= 2t + tim—1),

0 m=<R8g

m=0 uy= ug—%- (u?—u‘ll)+-;— (14“’—2ug‘+ )
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second order accuracy require modification. The Taylor series expansion in
time gives

2
WG, ) =i, 1)-+KI2 O 1) 4 L D Gom 1) 4 6.130)
Using the differential equation (6.128), we obtain
Qg(xm, fn) - ( a“)
ot ox
%u (Xm, tn) ( ad 3u))
e - Aax Aax (6.132)

It is easy to verify the relation

(5‘?5:( A 3“)) -7 [4:AR ) + 7oA A)un + 00

The Lax-Wendroff scheme becomes

urt = uh— o pAR(det it + rAG N

+An+l/27 A"+”24x)“m . (6.133)

Similarly, we may show that the implicit Wendroff scheme (6.129 iv) beco-
mes

[l+-% (I+pAntiHa ] nHt [I+ —;—(l-pMi”g)"x] um  (6.134)

6.7.3 Systems in conservation form

Here we assume that the matrix A in (6.128) is the Jacobian matrix of the
derivatives of the vector function f with respect to the components of the
unknown vector u. The equation (6. 128) becomes

[/

“+A( ) (6.135)
which may be written in the form

3u af(u)

%t ox =0 (6.136)

where
of
A(Il) = -a-—“

The equation (6.136) is said to be in conservation form. The Lax-Wendroff
method may be derived as follows:
ou_ ofw),*u_0 ( af(u)) [/ ( of )

g ox o~ a\ ox ) “ox\or

-2{ B)-E0E 2)-Zawit) e
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Substituting (6.137) into (6.131) we get

=u(x, Y (L8 S WY 9 a\y

u(xXm, tas1) =0(Xm, tx) k(ax )m+ > k ( ax(A(u)ax ))m+0(k3) (6.138)
Replacing the derivatives by the difference expressions, the Lax-Wendroff
method is given by

n 1 n n
unt =um— -2—p(f:.+| —fm—1)+ —;—pz(AmH/z(f:.H —fw)

— Am—1/2(fm— fm-1)) : (6.139)
where Ans1/2=A(ums1/2) and fm = f(ui)

The other difference schemes listed in (6.129) may also be written for (6.135).

From computation view point the two-step methods are used to solve (6.1 36).
We now list a few two-step methods.

Lax-Wendroff method
@) um*' = %(U:-H +Um—1)— 'Lz,‘(f::-ﬂ ~fm)

(i) u'=um—p(fnt —Tmid) (6.140)

Rubin-Burstein method 1

@) umiiz= % (um 1+ um)— —;-p(f;-+: —fm)
1= b a0 - S0

i) o =un— p(aia—falild) (6.141)
Rubin-Bur&tein method 2

() e = - + )= p(ER = 02)

Bt =L w0 = PR B8

(ii) it =um— 12’-(-12- (fm+1—fm—1) + bt B A /z) (6.142)
Gourlay-Morris method

@) wit2= —;‘(u:.+|/z+ll:'—uz)— %(ﬁ+t/2— fm—1/2)

@) u=un—opASB-RNRD 6.14)
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if A-has K negative and' N ~ K positive eigenvalues, where
u' = [uwz..ux]”
u'l=[ux,1uxy2- - un)T
The differential equation (6.128) together with the initial condition ‘or with
one of the two initial and boundary conditions constitutes a ‘well posed pro-
blem. For the scalar equation (6.105), the initial and boundary conditions
(6.154)-(6. 156) become. TR
D ulx, )=fx),- 0<x<1
(i) w0, )=g() . c>0 e
or u(l;t)=g(t). +c<O0. ., ., .. i .:(6.157)
The numerical solutlon of the dlﬁ'erentlal equatlon (6. 105) w1th the initial
condition: (6 '153) may be obtained using the procedure discussed in Subsec-
tion 5.4:1.°We ‘now illustrate the application of the explicit : and: implict -

difference schemes i in solvmg (6 105) w1th approprnate mmal and boundary
conditions. » SRS Gt

6.8.1 Initial boundary value problem -
We solve the differential equation

du Ou | ‘
FTCnRT Q c>0 B (6.158)‘

with the initial boundary conditions (6.157),
ulx,0)=f(x), 0<x<1 e
u(0,, t) =g(1), t=20 .- (6.159)

The nodal. peints : are, . gwen by Xm=mh, ta=nk, m=0, 1, 2,..., M,
n=0,1,2, ... and Mh=1. The Lax-Wendroff scheme with mmal and boun-
dary condmons become .

‘ uf..J'l—-u,,',' zlcp(u,,,.n um_l) +—-— czpz(u,,,.;.y 2u:.+u,:-,) (6.160)

Un = fim, U :“—gn+r o M n—O 1, 2, (6 161)

It is readily seen that numerically we need. boundary condmon at x=1 for
solving (6.159)-(6.160). The ‘additional numerical boundary condition may
be determined by various means, keeping in view that this condition should
not adversely affect the pure initial value stability condition, 0 < ¢ <1
The following four numencal boundary condmons at Jé =1 may be used:

1 l
=k~ 5 pe(Bupy — dupg—1 + uM-z)-l-? p’e"(uu 2up—1+upr—2)

(6.162)
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uit! = ufhy — peluns —um—1) (6.163)

n41 n+1 nt1 n41 ”n n n n
Uy peud T — um—1) = um +Hum—1— pclus —um-1)

or [ 1-—15—(1 —cp) Vx] ui!= [ 1——;—- (1+cp)Px ]u';'u (6.164)

U = o — 2ep(ub — um—1) — cp(un = 2ub + uir") (6.165)
The condition (6.162) is given by
Ju\" 1 32 n
u(xm, tap1) = u(xpm, tn)+ k(ﬁ:i)u'l' = k2 (—a—xuz—) +0(k3)

M

M

i (), o (3

or W =up— -12— cp(27x+ Vf)uﬁ; + -%—- c’p’viu’.{;

The condition (6.163) is an aproximation of the differential equation using
backward differences in time and space. The equation (6.164) is obtained by
integrating (6.158) over the rectangular cell, xam-1 < X < XM, nk <t <(n+1)k
(see Figure 6.5) with the help of the trapezoidal rule.

. Fig. 6.5 Rec;angula: cell

We have
XM (n+1)K

N -(g?~+cg§) dx dt=0 .
nk

xM-‘ iz ¥ . . .
Integrating and then applyihg the trapezoidal rule, we get (6.164).
The condition (6.165) is obtained by using the Dufort-Frankel method for
stabilizing the difference scheme. ‘ ' - :
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Example 6.5 Solve the initial boundary value problem

ou , o1
6—’t-'d,\(7”2)0 0<x<1
u(x, 0) =x2 0<x<1
u(0, t) =
using the Richtmyer method with 4 = —:l‘— and p=-;—.
The nodal points are
Xm=mh 0<sm<3
’n="k "=0, I’ 2, P

For p= —, the Richtmyer method may be written as
2

1
umii? = 5 (ttmar & tm)— —;—((uz)ﬁ,.:. 1= @2)m)

1
uf: llm - —((112)",+ 1/2— (uz)m—lIZ)

The initial boundary conditions become
ug,=mz/12, 0<m<3

or =0 u)= — u

0"'=0 n=0,1,2, ...
We have

n=0, ull2 2= —;- (um+1 +um) — % ((uz)g,,.r,_(,;z)g,)
=0, ulf2= 5 (u. + uo)—-""((ua)2 (49)») = 0.0540
m=1,ufi= > (& +ud)— -4 (P~ hP) =0.2546
m=2, uff= L (8+19) — £ (WP~ (dP) =06219
m=1, u} == (R~ i) =0.0956

m=2, uy= u3— —-—((us/z)2 (u33 )?) =0.3640
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For numerical boundary condition we use the method (6.163). We have

forp=%_-

n=0, ui=ul— —;— (32— (13)%) =0.7994.

The solution values obtained using analytic solution are
ul =0.1003 u3=0.3667 u3=0.7621

6.8.2 Results from computation
The differential equation

ou ofu?
5?+za;(7)-°

has been solved subject to the following conditions
(@) u(x, 0)=x2, 0<x<
u(0, 1)=0
with the analytic solution
u(x, 1) =[1+2xt—(1 +4x1)12] j212
(b) u(x, 0)=x, 0<x<1
u(0, )=0
with the analytic solution
u(x, t)=x/(1+1)

(c) u(x,0)=\/‘3c—, 0<x<1
u(0, 1)=0
with the analytic solution
u(x, t)=[—1t+(12+4x)'?])2
(d) u(x, 0)=(x)'?, 1<x<2
u(0, 1)=(2+2)'2—1¢
with the analytic solution
u(x, t) = (12 +2x)12—1¢
1 0 <x<0.l1
(e) ulx, 0)=
: x=0.1
u(0, )=1 t>0

(6.166)

(6.167)

The above problems have been solved with the Lax-Wendroff method using

p=1and 2, and A=0.1.
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The results are given in Table 6.5.

TABLE 6.5 MaxmMum ABsoLUTE ERRORS (ERROR X 10-4) IN
Lax-WENDROFF METHOD WITH A=0,1

Time P The differential equation u,+(% u?): = 0 with
steps initial boundary conditions
@ ® (c) @)
1 44 0.79(-07) 20.2 5.64
150
2 20 0.38(—07) 11.1 .
1 45 0.12(~06) 15.1 1.98
300
2 18 0.61(—07) 8.1 *
*unstable

The differential equation (6.166) with the discontinuous initial data (6.167¢)
has a discontinuous solution in which the discontinuity of the initial data is
propagated into the field of solution along the line x=0.1 +#/2. The solution
obtained using the Lax-Wendroff method for p=0.5 and 1 and £=0.01 are
given in Figure 66. The values of the solution after 50 time-stcps are plot-
ted for mesh points between x =25 ph and x =25 ph+15h. The theoretical
shock position occurs at x =25 pa+ 104

0 :
Yi) p=0.5, h=0.01 ' li) p=1.0, h=0.01

2
Fig. 6.6 Solution of%‘ + :;?;(—‘21-) = 0 with discontinuous data using

Lax-Wendroff method
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6.9 DIFFERENCE SCHEMES FOR SYSTEM OF
EQUATIONS IN TWO SPACE VARIABLES

We now extend the methods studied in Sec. 6.7 to the case of two-space
dimensional system ’

du  du, K _cu
gt—-i-Ag;"}‘Ba—'y—-o (6.168)

where u is a vector function of the space coordinates x, y and the time ¢, and
A, B are symmetric matrices which may depend on x, y, t and u. We wish to
determine the solution of (6.168) intheregion0 < x < 1,0< y< 1,120,
subject to the initial condition .
u(x, y, 0)="f(x, y)
and the boundary conditions
u(0, y, 1), u(l, y, ), u(x, 0, 1)
and u(x, 1, ¢) given for
0<x,y<1, t=20.

Further, we assume that there is no discontinuity in u between the initial and
boundary conditions. The region 0 < x, y < 1,0 <t < T is covered by a
rectangular net parallel to the coordinate axes with /, & the space and time
increments respectively.

The mesh ratio p=k/h is assumed to be a constant. We denote by
u/m =u" an approximate value of u(lh, mh, nk).

Firstly, we assume that A and B are constant symmetric matrices but not
necessarily commuting. The difference schemes listed in (6.129) may easily be
written for (6.168)

We have

Diffusing scheme
(i) bt =t - (82-+ 82)ur— p(Apds-+ Bty )ur
Lax-Wendroff scheme
(i) u*!=ui— p(Apsdx+ BisySyu" + ;-pz(AZS,i +B28?

+(AB + BA)padxpt)5))u"
Leapfrog scheme

(iii) uw*t!=u""1=2p(Apd; + Bu,dy)u
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Gourlay-Mitchell scheme

(iv) (I + —-li- pByd y) (I + —;—pAstx)u"“

1
= (I - —2-po,,3,,) (I - _;‘[’Al-‘xsx)ll"
Implicit scheme
v) W =ur— %p(Auxsﬁnyys,)(uuu»ﬂ) (6.169)

If the matrices A and B are functions of x, y and ¢ then the difference
schemes in (6.169) need modifications. The Lax-Wendroff scheme may be
written as

uttl =g® _p(An{»l llplxsx + Brtl /ZFySy)un + _}T.I,Z(Ar&l IZ(AxAnH /27::
+ VxA" HIZAx))un + _%. pZBnH/Z(AanHIZVy + VyBM-l IZAy)un
+ _%_ PHARHI B2 BRHUZARFL2) 5,0 8 0 (6.170)

6.9.1 Stability analysis
We assume that

U/ = ug ethBrtmhvy) 6.171)

- where B1 and v are arbitrary real numbers and wo, is a constant vector. The
matrices A and B are taken to be constant. Substituting (6.17 1) into (6.169ii),
we get

2
G = (I—p*A%(1 —cos Bih)— p*B*(1 —cos y1h)— %—(AB +BA) sin B1k sin y1h)

+ip(A sin B1h+B sin y1h) (6.172)
Using the Lax-Richtmyer sufficient condition
IG*Gll < 1+0(k) (6.173)
it may be verified that the Lax-Wendroff scheme (6.169ii) is stable if
0<p <-5—\71-§-/\—;—
where ||-|| denotes L> norm, G* is the complex conjugate transpose of G and
| Am | = max [124],1281]

| A=A 0] =0 |B—Agk|=0



